Skip to content

Where different views on Israel and Judaism are welcome.

  • Home
  • Subscribe / donate
  • Events calendar
  • News
    • Local
    • National
    • Israel
    • World
    • עניין בחדשות
      A roundup of news in Canada and further afield, in Hebrew.
  • Opinion
    • From the JI
    • Op-Ed
  • Arts & Culture
    • Performing Arts
    • Music
    • Books
    • Visual Arts
    • TV & Film
  • Life
    • Celebrating the Holidays
    • Travel
    • The Daily Snooze
      Cartoons by Jacob Samuel
    • Mystery Photo
      Help the JI and JMABC fill in the gaps in our archives.
  • Community Links
    • Organizations, Etc.
    • Other News Sources & Blogs
    • Business Directory
  • FAQ
  • JI Chai Celebration
  • [email protected]! video
Weinberg Residence Spring 2023 box ad

Search

Archives

"The Basketball Game" is a graphic novel adaptation of the award-winning National Film Board of Canada animated short of the same name – intended for audiences aged 12 years and up. It's a poignant tale of the power of community as a means to rise above hatred and bigotry. In the end, as is recognized by the kids playing the basketball game, we're all in this together.

Recent Posts

  • Settling Ukrainian newcomers
  • A double anniversary
  • Deep, dangerous bias
  • Honouring others in death
  • Living under fire of missiles
  • Laugh for good causes
  • Sizzlin’ Summer in June
  • Parker Art Salon on display
  • Helping animals and people
  • New LGBTQ+ resource guide
  • Innovators in serving the community
  • First Jewish Prom a success
  • Prince George proclaims Jewish Heritage Month
  • Community milestones … Wasserman & Feldman
  • Düsseldorf returns painting
  • קנדה גדלה במיליון איש
  • Garden welcomes visitors
  • Spotting disinformation
  • A family metaphor
  • Hate crimes down a bit
  • First mikvah in B.C. Interior
  • Check out JQT Artisan Market
  • Yiddish alive and well
  • Celebrating 30th year
  • Get ready to laugh it up
  • Supporting Beth Israel’s light
  • Na’amat to gather in Calgary
  • Community artists highlighted
  • KDHS hits all the right notes
  • Giving back to their community
  • The experience of a lifetime
  • Boundaries are a good thing
  • Mental health concerns
  • Food insecurity at UBC affects Jewish students, too
  • Healthy food Harvey won’t eat
  • חודש שלישי ברציפות של הפגנות

Recent Tweets

Tweets by @JewishIndie
photo - Researchers have shown that the brains of bats contain neurons that sense which way the bat’s head is pointed and could, therefore, support the animal’s navigation in 3-D space

3-D compass in the brain

0 Flares 0 Flares ×

Researchers have shown that the brains of bats contain neurons that sense which way the bat’s head is pointed and could, therefore, support the animal’s navigation in 3-D space. (photo from wis-wander.weizmann.ac.il)

Pilots are trained to guard against vertigo: a sudden loss of the sense of vertical direction that renders them unable to tell up from down, and can lead to crashes. Coming up out of a subway station can produce similar confusion: for a few moments, you are unsure which way to go, until you regain your sense of direction. In both cases, the disorientation is thought to be caused by the temporary malfunction of a brain circuit that operates as a three-dimensional compass.

Weizmann Institute scientists have now for the first time demonstrated the existence of such a 3-D compass in the mammalian brain. The study was performed by graduate student Arseny Finkelstein in the laboratory of Prof. Nachum Ulanovsky of the neurobiology department, together with Dr. Dori Derdikman, Dr. Alon Rubin, Jakob N. Foerster and Dr. Liora Las. As reported in Nature on Dec. 3, the researchers have shown that the brains of bats contain neurons that sense which way the bat’s head is pointed and could, therefore, support the animal’s navigation in 3-D space.

Navigation relies on spatial memory: past experience of different locations. This memory is formed primarily in a deep-seated brain structure called the hippocampal formation. In mammals, three types of brain cells, located in different areas of the hippocampal formation, form key components of the navigation system: “place” and “grid” cells, which work like a GPS, allowing animals to keep track of their position; and “head-direction” cells, which respond whenever the animal’s head points in a specific direction, acting like a compass. Much research has been conducted on place and grid cells, whose discoverers were awarded the 2014 Nobel Prize in physiology or medicine, but until recently, head-direction cells have been studied only in two-dimensional settings, in rats, and very little was known about the encoding of 3-D head direction in the brain.

To study the functioning of head-direction cells in three dimensions, Weizmann Institute scientists developed a tracking apparatus that allowed them to video-monitor all the three angles of head rotation – in flight terminology, yaw, pitch and roll – and to observe the movements of freely behaving Egyptian fruit bats. At the same time, the bats’ neuronal activity was monitored via implanted microelectrodes. Recordings made with the help of these microelectrodes revealed that in a specific sub-region of the hippocampal formation, neurons are tuned to a particular 3-D angle of the head: certain neurons became activated only when the animal’s head was pointed at that 3-D angle.

The study also revealed for the first time how the brain computes a sense of the vertical direction, integrating it with the horizontal. It turns out that, in the neural compass, these directions are computed separately, at different levels of complexity. The scientists found that head-direction cells in one region of the hippocampal formation became activated in response to the bat’s orientation relative to the horizontal surface, that is, facilitating the animal’s orientation in two dimensions, whereas cells responding to the vertical component of the bat’s movement – that is, a 3-D orientation – were located in another region. The researchers believe that the 2-D head-direction cells could serve for locomotion along surfaces, as happens in humans when driving a car, whereas the 3-D cells could be important for complex manoeuvres in space, such as climbing tree branches or, in the case of humans, moving through multi-storey buildings or piloting an aircraft.

By further experimenting on inverted bats, those hanging head-down, the scientists were able to clarify how exactly the head-direction signals are computed in the bat brain. It turned out that these computations are performed in a way that can be described by an exceptionally efficient system of mathematical coordinates (the technical term is toroidal). Thanks to this computational approach used by their brain, the bats can efficiently orient themselves in space whether they are moving head up or down.

This research supports the idea that head-direction cells in the hippocampal formation serve as a 3-D neural compass. Though the study was conducted in bats, the scientists believe their findings should also apply to non-flying mammals, including squirrels and monkeys that jump between tree branches, as well as humans.

“Now this blueprint can be applied to other species that experience

3-D in a more limited sense,” writes Prof. May-Britt Moser, one of the 2014 Nobel laureates, in the News and Views opinion piece that accompanies the Weizmann study in Nature.

Weizmann Institute news releases are posted at wis-wander.weizmann.ac.il, and are also available at eurekalert.org.

Print/Email
0 Flares Twitter 0 Facebook 0 Google+ 0 0 Flares ×
Format ImagePosted on February 13, 2015February 12, 2015Author Weizmann InstituteCategories IsraelTags 3-D compass, Arseny Finkelstein, hippocampal formation, Nachum Ulanovsky, science, toroidal

Post navigation

Previous Previous post: ישראל איבדה ידיד קרוב
Next Next post: Funding for entrepreneurs
Proudly powered by WordPress